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Abstract Direct methods provide elegant and efficient approaches for the predic-
tion of the long-term behaviour of engineering structures under arbitrary complex
loading independent of the number of loading cycles. The lower bound direct method
leads to a constrained non-linear convex problem in conjunction with finite element
methods, which necessitates a very large number of optimization variables and a large
amount of computer memory. To solve this large-scale optimization problem, we first
reformulate it in a simpler equivalent convex program with easily exploitable sparsity
structure. The interior point with DC regularization algorithm (IPDCA) using quasi
definite matrix techniques is then used for its solution. The numerical results obtained
by this algorithm will be compared with those obtained by general standard code
Lancelot. They show the robustness, the efficiency of IPDCA and in particular its
great superiority with respect to Lancelot.
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1 Introduction

There are many industries producing or operating safety-critical structures under
heavy loading conditions. Many of these structures or structural components behave
ductily and undergo plastic deformations under severe loading or under some nor-
mal operating conditions. Their lifetime may be determined by fatigue failure or
incrementally increasing deformations due to plasticity. A better understanding of
the behaviour of such structures under complex loading conditions may consider-
ably improve their design. In fact, the direct industrial need for end-users of a vali-
dated design and assessment method is to improve structural design and the process
in run/repair/replace/change operation decision-making. There is a strong industrial
need to extend both industrial activities to complex structures (i.e. realistic geometry,
complex loading, advanced material modelling, . . . ). A realistic description of the cor-
responding material response may require rather sophisticated constitutive models.
In combination with well-known numerical tools such as the finite element method,
it is in principle possible to study the behaviour of structures by performing a series
of incremental elastic-plastic analyses. However, for complex loading histories, the
required numerical expense of this kind of procedure may be very high. Furthermore,
an accumulation of errors cannot be excluded in principle.

Whereas, direct methods, namely limit and shakedown analysis [1, 2], provides
simply and rapidly information on limit states without recurring on the evolution on
deformation and material properties as functions of the loading history. The lower
bound direct methods lead to a problem of nonlinear mathematical programming in
conjunction with finite element methods and need basically [3]:

• the solution of the purely elastic reference problem,
• the use of an optimization procedure, to determine the safety factor against failure

and to construct a time-independent self-equilibrated residual stresses field.

The considered problem is a non-linear convex optimization problem with constraints,
which necessitates for the engineering applications a very large number of optimiza-
tion variables and a large amount of computer memory. To solve this large-scale
problem with a reasonable computer time, it is necessary to use an efficient algo-
rithm. For that, we apply the interior point with DC regularization algorithm [4, 5,
10]. The obtained numerical results are compared in the special case of limit analysis
and shakedown analysis to those obtained by the standard code Lancelot [6].

2 Lower bound direct method

The lower bound direct method can be expressed as follows [1]:
The structure shakes down with respect to the given loading P(x, t) ∈ L if there

exists a safety factor α > 1 and a time-independent field of residual stresses σ r(x)

such that its superposition with the purely elastic stresses σ E does not exceed the
yield condition for any time t > 0.
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F(ασE(x, t) + σ r(x)) ≤ 0, ∀x ∈ V (1)

The field of purely elastic stresses satisfies the following system of equations

Div σE = −f �, in V, (2)

n.σE = p�, on Sp, (3)

uE = u�, on Su (4)

with

εE = 1
2
(∇(uE) + ∇(uE)T), (5)

εE = E−1 : σE (6)

and the field of residual stresses satisfies

Div σ r = 0 in V, (7)

n.σ r = 0 on Sp, (8)

where V is the volume of the considered structure, Sp and Su are the disjoint parts of
the smooth surface S where the statical and kinematical boundary conditions are pre-
scribed respectively (S = Sp∪Su; ∅ = Sp∩Su) and n is the outward normal vector to Sp.

3 Discretization by finite element method

The purely elastic stresses σ E are calculated by using the virtual work principle com-
bined with the finite element discretization with test functions for the displacement
fields. Then, the purely elastic stresses σ E are in equilibrium with body forces f � and
surface tractions p� if the following equality holds∫

V

{δεE(x)}T{σE(x)}dV =
∫

Sp

{δuE}T{p�}dS +
∫

V

{δuEδ}T{f �}dV (9)

for any virtual displacement field δuE and any virtual strain field δεE satisfying the
compatibility condition (Eq. 5). The virtual strain field δεE(x) is derived by

{δεE(x)} =
NKE∑
k=1

Bk(x)δue
k, (10)

where δue
k is the vector of virtual displacements of the kth node of the element e and

[B] is the compatibility matrix depending on the coordinates. The integration of Eq. 9
has to be carried out over all Gaussian points NGE in the considered element, where
the index i refers to the ith Gaussian point. The corresponding coordinate vector shall
be denoted by xi, i.e.

∫

V

{δεE(x)}T{σE(x)}dV = {δue}T




NGE∑
i=1

wi|J|i[B(xi)]T [E][B(xi)]

 {ue},

= {δue}T [K]{ue},
= {δue}T{F}, (11)
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where {F} denotes the vector of nodal forces, wi the weighting factors, |J|i the
determinant of the Jacobian matrix and [K] the stiffness matrix. This integral leads
for the ith Gaussian point to

{σ E(xi)} = [E][B(xi)]{ue}. (12)

The residual stresses are self-equilibrated, which leads to∫

V

{δε}T{σ r}dV = 0. (13)

By introducing a vector form for the strain tensor ε, the corresponding virtual strains
δε are given in each element “e” by

{δεe} =
NKE∑
k=1

Bkδue
k. (14)

The shape functions of the considered element are the same as for the determination
of the purely elastic stresses. Using this relation and introducing the unknown residual
stress vector σ r

i at each Gaussian point i, the equilibrium condition (14) is integrated
numerically by using the well-known Gauss–Legendre technique. The integration has
to be carried out over all Gaussian points NGE with their weighting factors wi in the
considered element “e”

∫

V

{δε}T{σ r}dV =
NGE∑
i=1

wi|J|i
{NKE∑

k=1

Bkδue
k

}
σ r

i . (15)

By summation of the contributions of all elements and by variation of the virtual
node-displacements with regard to the boundary conditions, one finally gets the lin-
ear system of equations [7, 8]

NG∑
i=1

Ciσ
r
i = [C]{σ r} = {0}, (16)

where NG denotes the total number of Gaussian points of the reference body, [C]
is a constant equilibrium matrix, uniquely defined by the discretized system and the
boundary conditions and {σ r} is the global residual stress vector of the discretized
reference body.

Let us now assume that the load domain L is a convex hyperpolyhedron with NV
vertices. If the loading has n independently varying components such that

L =

P/P(x, t) =

n∑
j=1

µj(t)Pj(x), µj ∈ [µ−
j , µ+

j ]

 (17)

then the number of load domain vertices is NV = 2n. This quite specialized form is the
most commonly used in the design of structures. Here, P is the vector of generalized
loads (e.g. body forces, surface tractions, prescribed boundary displacements, tem-
perature changes or combinations of them), µj are scalar multipliers with upper and
lower bounds µ+

j and µ−
j , respectively. For subsequent considerations, the corners of

the polyhedron (load domain L) are numbered by the index j, such that j = 1, . . . , NV.
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The loads, which correspond to each corner of L are characterized symbolically by Pj.
In view of the convexity of the yield function F in (1) and due to the above assumption
on the load domain L [9], the discretized formulation of the lower bound method for
the determination of the shakedown loading factor is given by

(M)




max α,
tq,
NG∑
i=1

Ciσ
r
i = {0},

F(ασE
i (Pj) + σ r

i ) ≤ 0,
j ∈ [1, NV], i ∈ [1, NG].

(18)

The yield criterion has to be fulfiled at Gaussian points i ∈ [1, NG] and in each load
corner j ∈ [1, NV]. The number of unknowns of the optimisation problem (25)–(27)
is N = 1 + NG × NS corresponding to α and {σ r}. The number of constraints is
NV × NG + NK, where NS is the dimension of the stress vector at each Gauss-
ian point and NK denotes the degrees of freedom of displacements of the discretised
body. This problem can not be solved efficiently by classical algorithms of optimization
because for engineering problems the number of unknowns is in general very high.
To overcome the time-consuming is to use a software package for solving large-scale
nonlinear optimization problems.

4 Reformulation of the nonlinear convex program

Before applying IPDCA to find the solution of (18), we will introduce in this problem
some transformations, which lead to a simpler equivalent convex programme with
significantly less variables and constraints. Three reformulations corresponding to the
limit analysis with one point, with two points and with four points for the shakedown
analysis will be presented.

Problem (M) with one point has (12NG+1) variables and (7NG+3NK) constraints.
With two points it has (18NG + 1) variables and (13NG + 3NK) constraints. Finally
with four points problem (M) has 30NG + 1 variables and 28NG + 3NK constraints.

4.1 Reformulation of the model with one point

First rewrite the model with one point (i = 1), corresponding to proportional loading
(limit analysis)

max α
NG∑
r=1

CrXr = 0,

2∑
j=1

(σ 1
jr − σ 1

j+1,r)
2 + (σ 1

3r − σ 1
1r)

2 + 6
6∑

j=4

(σ 1
jr)

2 ≤ 2(ar)
2, (19)

σ 1
r − αβ1

r − Xr = 0,

r = 1, . . . , NG.
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The reformulation will need the matrix T ∈ IR6×6 defined by

T :=




1
2

1
2

1
2 0 0 0

− 1
2

1
2

1
2 0 0 0

− 1
2 − 1

2
1
2 0 0 0

0 0 0 1√
6

0 0

0 0 0 0 1√
6

0

0 0 0 0 0 1√
6




,

whose inverse is explicitly computed as

T−1 :=




1 −1 0 0 0 0
0 1 −1 0 0 0
1 0 1 0 0 0
0 0 0

√
6 0 0

0 0 0 0
√

6 0
0 0 0 0 0

√
6




to make the change of variables

σ 1
r = Tv1

r , r = 1, . . . , NG (20)

The second constraint in (19) is then written in the variables v1
r ∈ IR6, r = 1, . . . , NG as,

(v1
1r)

2 + (v1
2r)

2 + (v1
1r + v1

2r)
2 + (v1

4r)
2 + (v1

5r)
2 + (v1

6r)
2 ≤ 2(ar)

2,

r = 1, . . . , NG. (21)

It is clear that in the case of one point, both first and third constraints can be equiva-
lently replaced by the only one

NG∑
r=1

Cr(σ
1
r − αβ1

r ) = 0, r = 1, . . . , NG.

That is in the new variables v1
r , r = 1, . . . , NG.

NG∑
r=1

CrTv1
r − α

(
NG∑
r=1

Crβ
1
r

)
= 0, r = 1, . . . , NG. (22)

We have

CrTv1
r =

6∑
j=1,j 	=3

[CrT]jv1
jr + v1

3r[CrT]3,
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where Tj denotes the jth column of T and v1
jr is the jth component of v1

r . Consider

now the new variables z1
r ∈ IR5, r = 1, . . . , NG

z1
r =

z1
1r = v1

1r,

z1
2r = v1

2r,

z1
3r = v1

4r,

z1
4r = v1

5r,

z1
5r = v1

6r

(23)

and x1 ∈ IRNG given by

x1
r = v1

3r, r = 1, . . . , NG (24)

At this point, Problem (19) can be equivalently expressed in the new variables as

max α
NG∑
r=1

Drz1
r + Bx1 − αw1 = 0, (25)

(z1
1r)

2 + (z1
2r)

2 + (z1
1r + z1

2r)
2 + (z1

3r)
2 + (z1

4r)
2 + (z1

5r)
2 ≤ 2(ar)

2,

r = 1, . . . , NG,

where Dr ∈ IR(3NK)×5, B ∈ IR(3NK)×NGand w1 ∈ IR3NK are defined by

Dr := [(CrT)1 (CrT)2 (CrT)4 (CrT)5 (CrT)6], (26)

B := [(C1T)3 (C2T)3 . . . (CNGT)3], (27)

w1 :=
NG∑
r=1

Crβ
1
r . (28)

It remains to transform the convex quadratic constraints into the Euclidean ball con-
straints. For this we first consider the convex quadratic form

f (z) := 1
2
〈Qz, z〉 = (z1)

2 + (z2)
2 + (z1 + z2)

2 + (z3)
2 + (z4)

2 + (z5)
2, (29)

where Q is the following positive definite symmetric matrix

Q :=




4 2 0 0 0
2 4 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


 .

Using the Cholesky factorization LLT of the matrix 1
2 Q easily computed by

L :=




√
2 0 0 0 0

1√
2

√
3√
2

0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



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one transforms the convex quadratic constraints in (25) into (‖ . ‖ being the Euclidean
norm of IR5)

∥∥∥LTz1
r

∥∥∥2 ≤ 2(ar)
2, r = 1, . . . , NG

Hence, within the new change of variables

y1
r := LTz1

r , r = 1, . . . , NG. (30)

Problem (25) is formulated as

max α
NG∑
r=1

ArL−Ty1
r + Bx1 − αw1 = 0, (31)

∥∥∥y1
r

∥∥∥2 ≤ 2(ar)
2, r = 1, . . . , NG.

Finally, by introducing the matrices Ar ∈ IR(3NK)×5 and the variables u1
r ∈ IR5

Ar := DrL−T

ar
√

2
and u1

r := y1
r

ar
√

2
, r = 1, . . . , NG, (32)

one gets the new reformulation of (25)

max α
NG∑
r=1

Aru1
r + Bx1 − αw1 = 0, (33)

∥∥∥u1
r

∥∥∥2 ≤ 1, r = 1, . . . , NG.

The unknowns are α ∈ IR, x1 ∈ IRNG, u1
r ∈ IR5, r = 1, . . . , NG. Problem (33) has

(6NG + 1) variables et (3NK + NG) constraints.
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4.2 Reformulation of the model with two points

Let us recall the model with two points (i = 1, 2), corresponding to one-parameter
variable loading (shakedown analysis)

max α
NG∑
r=1

CrXr = 0,

2∑
j=1

(σ 1
jr − σ 1

j+1,r)
2 + (σ 1

3r − σ 1
1r)

2 + 6
6∑

j=4

(σ 1
jr)

2 ≤ 2(ar)
2,

σ 1
r − αβ1

r − Xr = 0, (34)
2∑

j=1

(σ 2
jr − σ 2

j+1,r)
2 + (σ 2

3r − σ 2
1r)

2 + 6
6∑

j=4

(σ 2
jr)

2 ≤ 2(ar)
2,

σ 2
r − αβ2

r − Xr = 0,

r = 1, . . . , NG.

It is clear that Problem (34) is equivalent to that obtained from the former by
replacing the first, third and fifth constraints with

NG∑
r=1

Crσ
1
r − α

NG∑
r=1

Crβ
1
r = 0,

σ 1
r − αβ1

r = σ 2
r − αβ2

r ,

r = 1, . . . , NG.

On the other hand, using the same transformations as in the model with one point,
one will state the new reformulation of (34) after obtaining the resulting constraints
related to

σ 1
r − αβ1

r = σ 2
r − αβ2

r , r = 1, . . . , NG. (35)

For this one follows each step of the transformations performed in the model of
one point. By the change of variables (20), the constraints become in the variables
vi

r := T−1σ i
r , i = 1, 2 and r = 1, . . . , NG

v1
r − v2

r − αT−1(β1
r − β2

r ) = 0, r = 1, . . . , NG. (36)

That can be written in the variables zi
r ∈ IR5 and xi ∈ IRNG, i = 1, 2 (introduced in

(23) and (24))

z1
r − z2

r − α[T−1]{1,2,4,5,6}(β1
r − β2

r ) = 0,

x1
r − x2

r − α[T−1]3(β
1
r − β2

r ) = 0, (37)

r = 1, . . . , NG,
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where [T−1]{1,2,4,5,6} ∈ IR5×6 is the submatrix of T formed by the rows [T−1]k, k =
1, 2, 4, 5, 6

[T−1]{1,2,4,5,6} :=




1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0

√
6 0 0

0 0 0 0
√

6 0
0 0 0 0 0

√
6


 .

The third change of variables (30): yi
r := LTz1

r , i = 1, 2 and r = 1, . . . , NG leads to
the following equivalence of (37)

y1
r − y2

r − αLT [T−1]{1,2,4,5,6}(β1
r − β2

r ) = 0,

x1
r − x2

r − α[T−1]3(β
1
r − β2

r ) = 0, (38)

r = 1, . . . , NG.

Finally the last change of variables (32): u1
r := y1

r
ar

√
2

, r = 1, . . . , NG, transforms (38)
into

u1
r − u2

r − α
1

ar
√

2
LT [T−1]{1,2,4,5,6}(β1

r − β2
r ) = 0, (39)

x1
r − x2

r − α[T−1]3(β
1
r − β2

r ) = 0,

r = 1, . . . , NG

or

u1 − u2 − αγ = 0, x1 − x2 − αη = 0, (40)

where γ ∈ IR5NG, and η ∈ IRNG are the following two constant vectors

γr : = 1

ar
√

2
LT [T−1]{1,2,4,5,6}(β1

r − β2
r ),

ηr : = [T−1]3(β
1
r − β2

r ),

r = 1, . . . , NG

and we deduce the new reformulation of the model with two points (34)

max α
NG∑
r=1

Aru1
r + Bx1 − αw1 = 0,

u1 − u2 − αγ = 0,

x1 − x2 − αη = 0 (∗), (41)∥∥∥u1
r

∥∥∥2 ≤ 1,
∥∥∥u2

r

∥∥∥2 ≤ 1,

r = 1, . . . , NG.
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We actually need to solve the simpler convex program

max α
NG∑
r=1

Aru1
r + Bx1 − αw1 = 0,

u1 − u2 − αγ = 0,∥∥∥u1
r

∥∥∥2 ≤ 1, (42)
∥∥∥u2

r

∥∥∥2 ≤ 1,

r = 1, . . . , NG.

Indeed, by virtue of (∗) in (41), if (u1, u2, x1, α) is an optimal solution of (42) then
(u1, u2, x1, x2, α) with x2 := x1 −αη solves (41). The converse is also true and both (41)
and (42) have the same optimal value.

Problem (42) has (11NG + 1) variables and (7NG + 3NK) constraints.

4.3 Reformulation of the model with four points

Problem (M) with four points ( i = 1, . . . , 4), corresponding to two-parameters vari-
able loading (shakedown analysis), takes the form

max α
NG∑
r=1

CrXr = 0,

2∑
j=1

(σ 1
jr − σ 1

j+1,r)
2 + (σ 1

3r − σ 1
1r)

2 + 6
6∑

j=4

(σ 1
jr)

2 ≤ 2(ar)
2,

σ 1
r − αβ1

r − Xr = 0, (∗)

2∑
j=1

(σ 2
jr − σ 2

j+1,r)
2 + (σ 2

3r − σ 2
1r)

2 + 6
6∑

j=4

(σ 2
jr)

2 ≤ 2(ar)
2,

σ 2
r − αβ2

r − Xr = 0, (∗∗)

2∑
j=1

(σ 3
jr − σ 3

j+1,r)
2 + (σ 3

3r − σ 3
1r)

2 + 6
6∑

j=4

(σ 3
jr)

2 ≤ 2(ar)
2, (43)

σ 3
r − αβ3

r − Xr = 0, (∗ ∗ ∗)

2∑
j=1

(σ 4
jr − σ 4

j+1,r)
2 + (σ 4

3r − σ 4
1r)

2 + 6
6∑

j=4

(σ 4
jr)

2 ≤ 2(ar)
2,

σ 4
r − αβ4

r − Xr = 0, (∗ ∗ ∗∗)

r = 1, . . . , NG.

As in the case of two points, by replacing the vectors Xr, r = 1, . . . , NG by σ 1
r −αβ1

r
in the first constraint, one observes that the constraints (∗) − (∗ ∗ ∗∗) in (43 ) can be
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gathered in the following

NG∑
r=1

Aru1
r + Bx1 − αw1 = 0,

u1
r − u2

r − α
1

ar
√

2
LT [T−1]{1,2,4,5,6}(β1

r − β2
r ) = 0,

x1
r − x2

r − α[T−1]3(β
1
r − β2

r ) = 0,

u2
r − u3

r − α
1

ar
√

2
LT [T−1]{1,2,4,5,6}(β2

r − β3
r ) = 0,

x2
r − x3

r − α[T−1]3(β
2
r − β3

r ) = 0, (44)

u3
r − u4

r − α
1

ar
√

2
LT [T−1]{1,2,4,5,6}(β3

r − β4
r ) = 0,

x3
r − x4

r − α[T−1]3(β
3
r − β4

r ) = 0,

r = 1, . . . , NG.

On the other hand the four convex quadratic constraints are transformed into

∥∥∥u1
r

∥∥∥2 ≤ 1,
∥∥∥u2

r

∥∥∥2 ≤ 1,
∥∥∥u3

r

∥∥∥2 ≤ 1, (45)
∥∥∥u3

r

∥∥∥2 ≤ 1,
∥∥∥u4

r

∥∥∥2 ≤ 1,

r = 1, . . . , NG.

Now let ξ , ζ ∈ IR5NG and λ, µ, ν ∈ IRNG be the constant vectors defined by

ξr : = 1

ar
√

2
LT [T−1]{1,2,4,5,6}(β2

r − β3
r ), (46)

ζr : = 1

ar
√

2
LT [T−1]{1,2,4,5,6}(β3

r − β4
r ),

λr : = [T−1]3(β
1
r − β2

r ), (47)

µr : = [T−1]3(β
2
r − β3

r ),

νr : = [T−1]3(β
3
r − β4

r ),

r = 1, . . . , NG.
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Then the model with four points (43) takes the equivalent form

max α
NG∑
r=1

Aru1
r + Bx1 − αw1 = 0,

u1 − u2 − αγ = 0,

u2 − u3 − αξ = 0,

u3 − u4 − αζ = 0,

x1 − x2 − αλ = 0 (∗) (48)

x2 − x3 − αµ = 0 (∗∗)

x3 − x4 − αν = 0 (∗ ∗ ∗)∥∥ui
r

∥∥2 ≤ 1, i = 1, . . . , 4,

r = 1, . . . , NG

As above in the model with two points, it suffices to solve the simpler convex program

max α
NG∑
r=1

Aru1
r + Bx1 − αw1 = 0,

u1 − u2 − αγ = 0,

u2 − u3 − αξ = 0, (49)

u3 − u4 − αζ = 0,∥∥ui
r

∥∥2 ≤ 1, i = 1, . . . , 4,

r = 1, . . . , NG

because of the following properties:

(1) if (u1, u2, u3, u4, x1, α) is an optimal solution to (49) then (u1, u2, u3, u4, x1, x2, x3,
x4, α), where (x2, x3, x4) is computed by (∗), (∗∗) and (∗ ∗ ∗) of (48)

x2 : = x1 − αλ,

x3 : = x2 − αµ,

x4 : = x3 − αν, (50)

solves (48) and both (48) and (49) have the sample optimal value.
(2) The converse is also true

The unknowns in (49) are α ∈ IR, x1 ∈ IRNG, ui = (ui
r) ∈ IR5NG with ui

r ∈ IR5 for
i = 1, . . . , 4 and r = 1, . . . , NG, and α ∈ IR.This convex program has (21NG + 1)

variables and (19NG + 3NK) constraints.

Remark 1 The new reformulations of the models with one and four points reduce
considerably the number of variables and constraints. Furthermore the transformtion
of convex quadratic constraints into Euclidean ball constraints allows better exploting
sparsity of the KKT systems in our method IPDCA introduced in [10].
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5 Interior-point with DC regularization algorithm algorithm for large-scale problems

The IPDCA is based on interior points approaches and DCA [11–17]. Its aim is to
find a KKT point of the following nonlinear programming problem

(PEI)




min f (x),
Ax − b = 0,
c(x) ≥ 0,
x ∈ IRn,

where f and c : IRn → IRmI are two twice continuous differentiable functions and c is
supposed to be concave. A ∈ IRmE×n a surjective matrix, and b ∈ IRmE a vector.

The first step in the interior point approach considered is to add slack variables w
to each of the inequality constraints in (PEI) and to add a linear constraints in order
to handle free variable x. The problem (PEI) is then reformulated to,

(P)




min f (x),
Ax − b = 0,
c(x) − w = 0,
x − y + z = 0,
w ≥ 0, y ≥ 0, z ≥ 0.

The second step is to consider the problem with the barrier objective function

(Pµ)




min f̄µ(x, w, y, z),
Ax − b = 0,
c(x) − w = 0,
x − y + z = 0,
w > 0, y > 0, z > 0

with

f̄µ(x, w, y, z) = f (x) − µ

mI∑
i=1

log(wi) − µ

n∑
j=1

log(yj) − µ

n∑
j=1

log(zj).

The IPDCA requires a DC decomposition of f = g −h, where g and h are two convex
functions.

By linearizing the concave component of the objective function, IPDCA solves
approximately the problem,

(DCk)




min ḡk(x),
Ax − b = 0,
c(x) − w = 0,
x − y + z = 0,
w ≥ 0, y ≥ 0, z ≥ 0,

where ḡk(x) = g(x) − ∇Th(xk)x.
The problem is then transformed to a sequence of problems with the logarithmic

barrier function:

(DCµ)




min gµ(w, x, y, z) − ∇Th(xk)x,
Ax − b = 0,
c(x) − w = 0,
x − y + z = 0,
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with

gµ(w, x, y, z) = g(x) − µ
mI∑
i=1

log(wi) − µ
n∑

j=1
log(yj) − µ

n∑
j=1

log(zj),

hµ(w, x, y, z) = h(x).

5.1 Step computation

The Lagrangian of (DCµ) is

Lµ = gµ(w, x, y, z) − ∇Th(xk)x − λT
E(Ax − b) − λT

I (c(x) − w) − sT(x − y + z). (51)

Expressing the first order necessary conditions for (DCµ) yields

(KKTµ)




∇xLµ = ∇xgµ(w, x, y, z) − ∇h(xk) − ATλE − B(x)TλI − s = 0,
∇wLµ = −µW−1e + λI = 0,
∇yLµ = −µY−1e + s = 0,
∇zLµ = −µZ−1e − s = 0,
∇λE Lµ = −Ax + b = 0,
∇λI Lµ = −c(x) + w = 0,
∇sLµ = −x + y − z = 0,

with B(x) = ∇c(x), W = diag(wi : i = 1, 2, . . . , mI)., Z = diag(zi : i = 1, 2, . . . , n),
Y = diag(yi : i = 1, 2, . . . , n).

Let us set v = µZ−1e and since ∇xgµ(w, x, y, z) = ∇g(x), after premultiplying the
second and the third equation of (KKTµ) by W and Y, respectively.

Let us set

Fµ(w, x, y, z; λE, λI , v, s) =




∇g(x) − ∇h(xk) − ATλE − B(x)TλI − s
−µe + WλI
−µe + Ys
−µe + Zv
−Ax + b
−c(x) + w

−v − s
−x + y − z




.

We should solve the nonlinear system of equations,

Fµ(w, x, y, z; λE, λI , v, s) = 0. (52)

Note that at the point �k = (xk, wk, yk, zk; λE,k, λI,k, sk, vk, ) this system is the KKT
conditions of the problem (P) at the point �k, because ∇g(xk) − ∇h(xk) = ∇f (xk).

Using the Newton method to solve the nonlinear system (52), At the k-th iteration
and for µ fixed, the linear system to solve is,

J(�k)�� = −Fµ(�k), (53)
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where J(�k) is the Jacobian matrix of Fµ(�k) and �� = (�x, �w, �y, �z; �λE, �λI ,
�s, �v). With

J(�k) =




Gk 0 0 0 −AT −BT
k −In 0

0 �I,k 0 0 0 Wk 0 0
0 0 Sk 0 0 0 Yk 0
0 0 0 Vk 0 0 0 Zk

−A 0 0 0 0 0 0 0
−Bk ImI 0 0 0 0 0 0

0 0 0 0 0 0 −In −In
−In 0 In −In 0 0 0 0




(54)

with Gk = G(xk), the Hessian of the Lagrangian at xk, Bk = B(xk), Sk = diag(si
k : i =

1, 2, . . . , n), �I,k = diag(λi
I,k : i = 1, 2, . . . , n), Vk = diag(vi

k : i = 1, 2, . . . , n) and In,
ImI , ImE the identity matrices.

For sick of clarity in our presentation we will leave for the moment the indexation
with k.

Let us set,

σ = ∇f (x) − ATλE − B(x)TλI − s,
γ1 = µe − WλI ,
γ2 = µe − Ys,
γ3 = µe − Zv,
ρ1 = Ax − b,
ρ2 = c(x) − w,
β1 = v + s,
β2 = x − y + z,

then the linear system can be written,


G(x) 0 0 0 −AT −B(x)T −In 0
0 �I 0 0 0 W 0 0
0 0 S 0 0 0 Y 0
0 0 0 V 0 0 0 Z

−A 0 0 0 0 0 0 0
−B(x) ImI 0 0 0 0 0 0

0 0 0 0 0 0 −In −In
−In 0 In −In 0 0 0 0







�x
�w
�y
�z
�λE
�λI
�s
�v




=




−σ

γ1
γ2
γ3
ρ1
ρ2
β1
β2




.

By a successive alimination process we have from the seventh equation

�v = −�s − β1 (55)

and by replacing �v in the fourth equation we get,

�z = V−1Z�s + β1 + V−1Zβ1 + V−1γ3. (56)

The last equation of the system gives,

�y = �x + �z + β2. (57)

So

�y = �x + V−1Z�s + β1 + V−1Zβ1 + V−1γ3 + β2. (58)
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If we set E = (YS−1 + ZV−1)−1 we have,

�s = −E�x + E[V−1(Zβ1 + γ3) + β1 + S−1γ2]. (59)

The sixth equation of the system gives,

�w = −D�λI + �−1
I γ1, (60)

where D = �−1
I W. We get after premultiplying the equations by −1 the reduced

linear system,

−(G(x) + E) AT B(x)T

A 0 0
B(x) 0 D





�x

�λE
�λI


 =


 �

−ρ1

−ρ2 + �−1
I γ1


 . (61)

with � = σ − E[V−1(Zβ1 + γ3) + β1 + S−1γ2].
Note that the matrix in the linear system (61) is not quasidefinite because the 2 × 2

matrix block is zero. To make it quasidefinite we replace this 2 × 2 matrix block by
the perturbation δ2ImE to get the perturbed linear system,


−(G(x) + E) AT B(x)T

A δ2ImE 0
B(x) 0 D





�x

�λE
�λI


 =


 �

−ρ̄1

−ρ2 + �−1
I γ1


 (62)

with ρ̄1 = Ax − b + δ2(λE − λE,k).
We note that the right hand side of this equation is the KKT conditions of the dual

regularized problem,

(DRk)




max fµ(x) + λT
Eb − δ

2 (λE − λE,k)T(λE − λE,k) − λT
I c(x) + [λT

I B(x)]Tx
+∇f (x)Tx + sTz,

∇f (x) − ATλE − B(x)TλI − s = 0,
λE, λI > 0, s > 0,

with

fµ(x) = f (x) − µ

mI∑
i=1

log(λI,i) − µ

n∑
j=1

log(sj).

The new quadratic term present in the objective penalyzes directions that move the
current iterate far away from the iterate λE,k.

The problem (DRk) is the regularized of the problem

(D)




max fµ(x) + λT
Eb − λT

I c(x) + [λT
I B(x)]Tx + ∇f (x)Tx + sTz

∇f (x) − ATλE − B(x)TλI − s = 0,
λE, λI > 0, s > 0,

that is the dual of the problem (P).
Note that by the choice (λE,k, λI,k, sk) as the current dual triplet at the iteration k,

we ensure that the right hand side of the reduce system is not altered, that is,

ρ̄1 = ρ1 = Ax − b,
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while we benefit with the regularization δ2ImE ; and the linear system that we solve in
IPDCA at each iteration is,

−(G(x) + E) AT B(x)T

A δ2ImE 0
B(x) 0 D





�x

�λE
�λI


 =


 �

−ρ1

−ρ2 + �−1
I γ1


 . (63)

The approach that we have adopted here is close to the primal-dual regularization
approach presented in [18–20], the difference resides in the choice of the primal
regularization. In our approach the primal regularization is the DC regularization.

To avoid using definite matrix perturbations, another alternative suggested by
Vanderbei [21, 22] to treat the equality affine constraints consists in replacing these
constraints by,

Ax + b − t = 0, t + v = 0, t ≥ 0, v ≥ 0.

With this approach we add linear constraints and two variables, compared to our
approach, this approach consumes more memory for a comparable result.

The matrix involved in (63) is now quasi-definite and is known to be strongly
factorizable to a form of Cholesky-like factorization [23].

To compute the next iterate,

�k+1 = �k + ϒk��k

with ϒk = diag{αxk In, αwk ImI , αyk In, αzk In, αλE,k ImE , αλI,k ImI , αsk In, αvk In}, the steps
sizes αxk , αwk , αyk , αzk , αλE,k , αλI,k , αsk , αvk , are determined in (0, 1] and could be equal
each other. Moreover the slack variables, wk, yk, zk and dual variables λI,k, sk, are all
positive at the solution this propriety is maintained during the iteration process. We
define

αmax
wk

= γ max
1≤j≤mI

{
− w(j)

k

�w(j)
k

: �w(j)
k < 0

}
,

αmax
yk

= γ max
1≤j≤n

{
− y(j)

k

�y(j)
k

: �y(j)
k < 0

}
,

αmax
zk

= γ max
1≤j≤n

{
− z(j)

k

�z(j)
k

: �z(j)
k < 0

}
,

αmax
λI,k

= γ max
1≤j≤mI

{
− λ

(j)
I,k

�λ
(j)
I,k

: �λ
(j)
I,k < 0

}
,

αmax
sk

= γ max
1≤j≤n

{
− s(j)k

�s(j)k

: �s(j)
k < 0

}
,

αmax
vk

= γ max
1≤j≤n

{
− v(j)

k

�v(j)
k

: �v(j)
k < 0

}

that represent the maximal steps sizes autorized to keep the positivity of the respective
variables, with γ ∈ (0, 1].

Once the maximal steps sizes are computed we set,

ϒmax = min
{
αmax

wk
, αmax

yk
, αmax

zk
, αmax

λI,k
, αmax

sk
, αmax

vk

}

a backtracking line search is performed in order to decrease the L1 merit function

Mσµ(x, w, y, z) = f̄µ(x, w, y, z) + σ‖ Ax − b ‖ + σ‖ c(x) − w ‖
+ σ‖ x − y + z ‖, (64)
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where σ is a positive penalty parameter. This parameter is updated at each iteration.
Clearly the step size ϒk is computed in (0, ϒmax] and verifies the Armijo’s condition,

Mσµ(�k + ϒk��) ≤ Mσµ(�k) + βαkM′
σµ(�k; ��) (65)

with β a constant in (0, 1
2 ). If the condition (65) is not satified, then a new step size

is taken in [β1ϒk, β2ϒk], with β1, β2 ∈ (0, 1) and β1 < β2. The procedure is repeated
until (65) is satisfied. Then the new primal-dual iterate is,

�k+1 = �k + ϒk��.

The distance of the point �k to central path is mesured using the euclidian norm
of the perturbed optimality conditions, that is ‖ Fµ(�k) ‖ less than a given precision
ε; the parameter µ is decreased and the process is repeated until µ becomes zero.

5.2 The interior point with DC regularization algorithm algorithm for the problem
(PEI)

We will now describe the main lines of IPDCA to solve the problem (PEI).

Algorithm 1 A primal-dual interior point algorithm(IPDCA)

1. Chose �0, β ∈ (0, 1
2 ), θ ∈ (0, 1) and σ0 and a precision ε. Set k = 0.

2. Compute the step ��k using (52)–(63).
3. Compute the step size ϒk using the condition (65), if there is no step size satisfying

(65) then stop, else set

�k+1 = �k + ϒk��.

4. If ‖ Fµ(�k) ‖≤ ε then stop, else update µk+1 = θµk and update σk set k = k + 1
goto step 2.

An important point in the algorithm just presented is the rule to update the penalty
parameter σk. In the present version of IPDCA we have adopted the following rule,

if σk−1 ≥‖ λ̃k ‖ +σ̄ then
σk = σk−1

else
σk = max{ζσk−1, ‖ λ̃k ‖ +σ̄ }

end
with ζ > 1, σ̄ a given positive number and

λ̃k = λI,k + �λI + λE,k + �λE + sk + �s.

Remark 2 In our implementation of IPDCA for solving the convex problem (M) we
first reformulate it as a false DC program of the form

(PDC)




min f (x) = g(x) − h(x),
Ax − b = 0,
c(x) ≥ 0,
x ∈ IRn,

where g is a strongly convex function g(x) = f (x) + ρ
2 ‖ x ‖2 and h(x) = ρ

2 ‖ x ‖2, with
ρ being a positve number, we take ρ = 10e−3.
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6 Illustrative example

The IPDCA was coded in standard C, both codes were tested on a PC machine with
4096MB of RAM and a processor of 2200MHz with SuSE 9.1. The stopping precision
for Lancelot and IPDCA is 10e−4.

To validate the presented method, we consider the behaviour of a sheet with circu-
lar hole subjected to biaxial tension. For symmetry reasons, only a quarter of the unit
cell is considered where the geometry and the adopted mesh are shown in Fig. 1. Here,
SOLID45 is used, where each element is defined by eight nodes having three degrees
of freedom at each node. The adopted geometry and mechanical characteristics are:

L = 50 mm, r = 10 mm, h = 2 mm, E = 2.1×105 MPa, σY = 2.8×102 MPa,
ν = 0.3

For this example, the following loading conditions are investigated:

(a) px and py increase proportionally (model with one point);
(b) Both loads px and py vary independently (model with four points).

The problem characteristics are presented in Table 1. The results of the loading cases
(a) and (b), corresponding to limit and shakedown analysis, respectively are given in
Table 2 and the computing time is in seconds. The results of the loading case (b) are
also presented in Fig.2

It can be observed in Table 2 that, the safety factor (loading factor α), obtained with
the IPDCA method agree with the result of the standard code Lancelot. The great

Fig. 1 Sheet with circular hole

Table 1 Test problems charateristics

Name NG NK Nbr of var Nbr of const Nbr of charges Nbr of points

(a) 1536 442 18433 12078 2 1
(b) – – 46081 44334 2 4
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Fig. 2 Results of Lancelot and IPDCA for the loading case (b)

Table 2 Comparison between IPDCA and Lancelot

ϕ Safety factor CPU times ϕ Safety factor CPU times

Lancelot IPDCA Lancelot IPDCA Lancelot IPDCA Lancelot IPDCA

0◦ 2.258 2.302 43,200 190 0◦ 1.783 1.783 28,800 117
10◦ 2.476 2.487 65,212 137 10◦ 1.692 1.701 41,600 115
20◦ 2.691 2.740 65,120 136 20◦ 1.666 1.674 41,540 115
30◦ 2.972 3.072 64,930 128 30◦ 1.691 1.700 41,512 112
40◦ 3.360 3.461 64,850 113 40◦ 1.771 1.780 40,987 109
45◦ 3.576 3.588 64,595 82 45◦ 1.836 1.846 41,512 114
50◦ 3.360 3.462 65,245 211 50◦ 1.780 1.781 41,410 106
60◦ 2.972 3.071 65,876 234 60◦ 1.700 1.701 41,554 111
70◦ 2.691 2.737 66,005 261 70◦ 1.674 1.674 41,609 117
80◦ 2.476 2.484 66,223 365 80◦ 1.701 1.701 41,612 119
90◦ 2.258 2.300 66,798 479 90◦ 1.783 1.783 41,620 110

advantage of the IPDCA method becomes obvious, if we consider the computing time
and the required memory spaces.
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